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Abstract During the past several decades the nonlinear rela-
tionship observed betweéhandF,,

The Yule—Nielsen effect, also called optical dot gain, is
a nonlinear relationship between the reflectance of a R(F)=[FR" +(1-F)R"]", (2)
halftone image and the fractional dot area of the half-
tone dots. Two models of the Yule—Nielsen effect arehas been modeled empirically and quite successfully with
examined. The first is an empirical model previouslyEq. 2, the Yule—-Nielsen equati®éhExperimentally one
described in the literature, and the second is an a priomay adjust the value ofto achieve the best fit between
model derived for an idealized halftone line system inEq. 2 and measured valueséndF,. The Yule—Nielsen
one spatial dimension. Both are shown to model halfequation generally provides an excellent fit to experi-
tone behavior well. By combining the two models wemental data with values aftypically falling in the range
derive a semiempirical function that establishes a simpl& < n< 2.5 However, it would also be useful to be able to
connection between the magnitude of the Yule—Nielsepredict then value based on underlying paper and ink
effect and independently measurable scattering charaoptical parameters. Both theoretical and empirical at-
teristics of the paper. The potential utility of this tempts have been made to relate the Yule—Nielseatue
semiempirical model for characterizing the impact ofto the fundamental physical and optical parameters of
other factors, such as the shape of halftone dots and depttk and papef,*2 but these have largely fallen short of

of ink penetration, is discussed. providing practical solutions to the problémPart of
) the difficulty in relatingn to fundamental parameters may
Introduction be a reflection of the fact that the Yule—Nielsen equa-

tion, though a useful and often accurate model of tone
Dot gain, a concept long associated with halftone imagreproduction, is intrinsically incorrect. Photon flux, and
ing, refers to the generally observed phenomenon thattaus reflectance, should add linearly, as suggested by the
printed dot pattern appears darker than one would exMurray—Davies (Eq. 1), rather than by the power factor
pect on the basis of the nominal size of the dot intendedf 1/n in Eq. 2. The objective of the current project has
by the printing process. Physical reasons for dot gaibeen to replace the Yule—Nielsen model with models that
are many, including the lateral spread of ink during transean more easily be related to fundamental physical and
fer from a lithographic plate and the lateral diffusion ofoptical parameters of the system. As will be shown, the
ink-jet drops as they strike the paper. Once the imagmagnitude of the Yule—Nielsen effect can be predicted
has been printed, the actual dot area may be measuregpiantitatively from the measured scattering characteris-
Conservation of photon energy suggests the Murraytics of papers.
Davies equation,
An Empirical Alternative to Yule—Nielsen
R(F) =FR + (1 -F)R,. (1)
The underlying cause of the nonlinearity betwBeand

In this equation the macroscopic reflectariR@,), F,, as suggested by Yule and Nielsen in their original
is linearly scaled between the reflectance of the papework2*tis that light that strikes the paper between half-
R, and the reflectance of the inR,, with the fractional tone dots does not always reflect back from the point at
dot area (x F, < 1. For example, if one were to print a which it entered the paper. Rather, light scatters and of-
halftone dot of area fractios = 0.5, and if the respec- ten emerges under a halftone dot and is thus absorbed.
tive paper and ink reflectances were 1.00 and 0.00, therhus the overall reflectance of the image is lower than
one would expect a macroscopic reflectanc@ 9f0.50. would be expected in the absence of lateral scattering.
However, an experimental measurement almost alwayis addition, recent reports of microdensitometric analy-
results in a reflectance significantly less than that presis of halftones has shown that both the reflectance of
dicted by the Murray—Davies equation. This effect, whichthe paper between the dof, and the reflectance of
is different from physical dot gain, is called thale— the halftone dotR, decrease as the dot area fractign,
Nielsen effegtor optical dot gair? increase$!*'*The data in Fig. 1 illustrate a typical case
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11 ) | | 1 power of the paper and tivefactor to the lateral distri-

X bution of ink at the edge of the dot. As described below,
these relationships can be established theoretically, and
combining the theoretical analysis with the empirigal
model leads to derivation of a semiempirical relation-
ship that directly and simply relates the magnitude of
the Yule—Nielsen effect to independently measurable pa-
rameters of the system. Moreover, the results suggest an
experimental means for quantitatively characterizing the
P . impact of other factors, such as the shapes of halftone
dots or the extent of penetration of ink-jet ink, on the
1{1 Yule—Nielsen effect.

Reflectance R
[
Q,
1

o An a priori Model of an Ideal Halftone

A simple, one-dimensional halftone system is one with
lines rather than dots, and we assume ink having Beer—
Lambert transmittance. The ink is also assumed to rest
on top of the paper substrate with no penetration into
Figure 1. Reflectance values for a 65 Ipi (2.6 cycles/mm) halfthe paper. The Fourier series of Eq. 5 provides the basis
tone gray scale printed with a wax thermal transfer printer. for a description of this idealized halftone system:
Values R, Rand R are, respective reflectance values for the 9 ® _qn
overall image, the halftor)e dqts, and the paper bgtwgen the fi(x)= Fp += z
dots, measured as described in the Appendix. Solid lines are m&e N
modeled with empirical constants w = 0.35 and v = 0.05. The paper fraction i§, = 1 —F,, and w is the line
frequency of the halftone. These and other terms are de-
scribed in Fig. 2. We can scale this function to describe

) the transmittance pattern of the halftone lines:
for the mean reflectance values of ink dots and of paper

between the dots, measured by microdensitometry as de-
scribed in the Appendix.

Dot Fraction, F,

sin(n7F, ) cos(2mMaw,x).  (5)

Ti(x): fi(X)(l_Ti)+Tl' (6)

As shown beforé; the changes iR andR, with F,

If the edge of the halftone line is not perfectly sharp,

observed in experiments such as that shown in Fig. e can modify the Fourier series as shown in Eq. 7. The

can be modeled empirically by Egs. 3 and 4.
R(F)=R[1-Q-T)F"]M1-(1-T)F]. (3)
R (F,) =R[1-(1-T)A-F)HIML-1-T)A-F)l. (4)

MTF, function in this equation,

_pL2o
f=F,+ 23

n=1

sin(n7i,) cos(2m w,x) MTF,(nw,),(7)

is a Fourier description of the lateral distribution of colorant

at the edge of the dot. If the dot has a perfectly sharp edge,
In these equations, = 1 —F;, andR; is the reflec- then MTF = 1 and Eq. 7 is the same as Eq. 5.
tance of the unprinted papeT;is the transmittance of Applying Eq. 7 to Eq. 6 not only describes the trans-
the ink at 100% dot. Assuming Beer—Lambert transmismittance pattern of the halftone dots; it also describes
sion, T, = (R /R))*? whereR,, is the reflectance of the the irradiance of light entering the paper after passing
ink image at 100% dot. The power factonsandv, are  the halftone dots. After this pattern of light enters the
identical in both equations and are adjusted empiricallpaper it is scattered and some is absorbed. Scattering is

to achieve a good fit between the equations and the megescribed with an MTFunction as shown in Eq. 8.
sured values of paper and ink reflectances at each value

of F,. The resulting reflectance values are then used in
the Murray—Davies equation [Eq. 1 with= R (F,) and
R =R(F,)] to calculate the overaR versug-,. This em-
pirical model has been shown to model the Yule—Nielsen
effect as well as the Yule—Nielsen equatidbihe solid fix) . 3
lines drawn thorough the data in Fig. 1 were modeled in 1 A
this way.

The empiricalw,vmodel was observed to fit as well
as, but not better than, the much simpler Yule—Nielsen
model when applied to a variety of halftone types pro- 0 } + — X
duced with a variety of impact and non-impact printing 0
technologies® However, it was suggested that thes /
model may offer a better connection with the fundamen-

F=1/4 F=1-F o, = 1/A

e e

tal physical and optical parameters of the system. In par-
ticular, thew factor may be related to the lateral scattering

Xx=a/2 x=i-—2a/2

Figure 2. Diagram of the Fourier series of Eq. 5.
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reflectances can be modeled by integrating Eq. 10 from
' X = @/?2) tox = | — @2). Similarly, the mean value of the
reflectance of the ink dot can be modeled by integrating
from x = —a/2 tox = +a/2. With some algebraic manipula-
tion this leads to the following expressions RyandR:

R, (Fy) = RIG,(F,)A-T)I+T ]G (F)A-T)I+T], (11)
R(F)=RIH(F)A-T)I+T]OH (F)A-T)I1+T]  (12)

Relative Frequency
I

where we have the following series expressions result-
ing from the integration:

Gp(Fy) =F, Z sinc® (nFp)MTR, (nwo )MTF, (nw,),  (13)

n=-o

Reflectance, R

had n
Figure 3. Histogram showing the relative frequency of occur- G (F,)=F zisincz(nF YMTF (nw,) (14)
h . i\"p p p i 0/
rence of reflectance values in halftone images captured at 40 n
magnification. Rand R are reflectance values at the peaks re-
spectively corresponcfing to ink dots and to paper between the
dots.

n=-o0

Hp(R)=1-F Z sinc?(nR)MTF, (nw, )MTF,(nw,), (15)

n=-o0

=) n

fp(X) = Fp +7TnZl n Sln(nan)COS(27'lnon) Hi(l:l)zl_ F| Z SinCz(nFI )MTFI (nwo). (16)
n=-o
“MTF, (nWo)MTF,(nW, ). (8) The model represented by Egs. 11 through 16 con-

tains three independently measurable const&tsre-
flectance of the unprinted papé€r; = transmittance of
he ink at~; = 1; and w= frequency of the halftone lines.
nly two other items are required to calculBfg,) and
R,(F), and with Eqg. 1 to calculate the overall, macro-
_ _ scopic reflectance of the halftone image. These two items
L OO=RIT,00A-T)+ T ©) are the MTF functions for the scatter of light in paper
and the lateral spread of the ink edges.

This pattern of light then encounters the transmit- In a recent MTE analvsis of paper. it was shown that
tance pattern of the halftone dots to produce a final "She lateral scattering of Iiy htin paper’could be modeled
flected patternR(x), given by Eq. 10. 9 9 pap

closely with the following MTF functiof:

Absorption of light is governed by the reflectance
factor of the papeR,. With R, and the series expression
of Eq. 8 one can model the overall irradiance patter
reflected from the paper with Eq. 9:

R(X) =1, (x) 0 (x). (10) 1
MTF,(w) = —————=.

Relating Theory to Data p(©) 1+ (ko) (7
If we setx =1/2 in Fig. 2 and in Eq. 10, then we have the ~ Values of the MTF constank,, can be measured
reflectanceR(l/2) for the paper at the point equidistant experimentally, either by analysis of Kubelka—Munk
between two halftone lines. Similarly, if we set 0 in  scattering and absorption coefficie¥it®¥ or by image
Eqg. 10 we have the reflectanR&) for the center of the analysis of various patterns of light projected onto the
halftone line. These quantities can be measured experurface of the papétte1920Because no MTF function
mentally with the image microdensitometer described inthat describes the softness of printed dot edges has been
the Appendix. However, it is easier experimentally andexplored or reported in the literature, the following func-
more precise statistically to examine the histogram ofion was chosen arbitrarily:
reflectance values captured over a 4-mm field of view of
a halftone dot pattern. Figure 3 shows such a histogram
for a halftone pattern printed at a nominal 50% dot area MTR (w) =
by offset lithography. The average reflectance of the
paper between the halftone lines is located at the right-
hand peak of the histogram. Similarly, the average re-  Although the a priori model appears complex, it is
flectance of the halftone line is indicated by the peak omasily applied. Starting with four independently measur-
the left side of the histogram. Theseean value able constant®R, T, w,, andk, and one arbitrary con-

1
ko a®)
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Figure 4. Reflectance range versusfér Paper B printed at  Figure 5. Reflectance range versygdt Papers A, B, and CO
w= 2.4 cycles/mmx) and atw, = 7.7 cycles/mn{d]). Both ' x and [7) with k, = 0.263, 0.455, and 2.00 mm, respectively.
ink reflectance, Rand reflectance of the paper are betweenTng pajftones are printed at 2.4 cycles/mm. Solid lines are mod-

:Eg ’:jec))(tts, R shown. Solid lines are modeled as described ing o4 as described in the text.

stant,k, one caruse sequentially Egs. 18 back throughexperimental effect of changing the frequemgy,of the

11 to calculate paper and ink reflectances as a functiomalftone pattern. Figure 5 shows the effect of changing

of F.. Then Eqg. 1 can be used to calculate the overalpaper typek,. In both cases the experimental trends are

macroscopic reflectance. closely modeled, as shown by the solid lines in the fig-
ures, by changing only the corresponding parameters,

An Experimental Test of the a priori Model  w, andk, of the model, leaving the other parameters un-

changed.
One-dimensional halftone gray scales were printed with
offset lithography as described in the Appendix. The half- Combining the Empirical and
tones ranged from 0 to 100% ddt from O to 1) and a priori Models

were printed at 60 Ipw, = 2.4 cycles/mm) on three dif-

ferent papers, called A, B, and C, with MT¢onstants The a priori model represented by Eqgs. 11 through 18
k,=0.263, 0.455, and 2.00 mm, respectively, measurecklate the tone reproduction characteristics of halftone
as described previoustyPaper A was a coated sheet, Bimages and independently measurable parameters of the
was noncoated, and C was a resin-filled translucent shegystem. However, the model strictly applies only to an
manufactured as a tracing paper. Paper B was also printed

at 195 Ipi (v, = 7.7 cycles/mm). The MTF constant of

each paper had been characterized previdéidean 17X I
values of paper and ink reflectance in the halftones were o X
measured from reflectance histograms, as described °
the Appendix. The print densities varied somewhat fror o3 4 o

paper topaper and from print run to print run. Thus, in g X

order to compare results, relative reflectance values we § X
calculated by linearly scaling reflectance over the ranc @ x
between 0 and 1 corresponding to relative reflectance
the ink atF, = 1.0 and of the paper &t = 0. Figures 4
and 5 show the results.

To model the lines in Figs. 4 and 5, valueRgfT,,
and the MTE constants for Papers A, B, and C were use
as measured and were not adjusted to minimize the d
ference between the data and the model. A valleof
0.05 mm was chosen to provide the best fit to the data( ]
for Paper B at 7.7 cycles/mm. The same value then was 0
used in all of the other models in Figs. 4 and 5.

Print quality in the lithographic print series was not _
very good, and there is much experimental noise in thEi9ure 6. Reflectance of paper between halftone dots mod-
microreflectance data. However, the significance of th&'€d ©) with Eq. 11 with k= 0.25 mm and k= 0.05 mm,

- . ] and modeledx) empirically with Eq. 4 using w = 0.332 and v
model can still be seen in the trends. Figure 4 shows th:eo.056, as calculated from Eqgs. 22 and 23 atf.5.

Reflectance

Dot Area Fraction 1
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Figure 7. Points() are the empirical power factor, w, as a
function of the product k), calculated using Eq. 22 with E
0.5. The line is Eqg. 24 with A = 0.66.

Because the left side of Eq. 19 is empirically derived,

we are free to relate the terms in brackets as follows:
[1-A-THFR'1=[G,(F))Q1-T)+T], (20)
[1_(1_T|)F|V]=[G|(Fp)(1_T|)+T|]' (21)

With algebraic manipulation we have the following:

_In(G,(F,))

= (22)
_In(G(F,))
TRy (23)

The right side of Eq. 23 is a function only @, k;,
andw,. Thus, as suggested originally, the power fagtor
depends on the edge sharpnéssof the halftone dot.
The right side of Eq. 22 contains the product MTF
MTF, and thus is a function of both the edge sharpness,

ideal, one-dimensional halftone with ink perfectly on topk;, and the lateral scatter of ligh¢, However, in most

of the paper. The empirical model of Eqgs. 3 and 4, ogases observed in this laboratory the mean scattering dis-
the other hand, has been shown to be generally appliance of light is much greater than the dimensions of dot
cable to a wide variety of halftone types produced by ®dges so thak, > > k. When this is true, we can ap-

wide variety of printing technologi€&lf the empirical
model is a closapproximation of the behavior of real
halftones, then we should be able to relatewrendv

parameters of the empirical model to the independently

proximate the MTF of paper as MTFMTF,2 MTF,. In
this case thev power factor depends on the paper MTF
constantk,, as suggested previousty.

In the empirical model the andv factors are used

measurable parameters of the a priori model. We can d&s constants. However, Egs. 22 and 23 implythand

this by equating Egs. 3 and 11:

[1-(-T)F"]M-(1-T)F] =

[G,(F))A-T)I+T]OG (F,))1-T)HI+T].  (19)
1 T o)
o o)
b 4
X
> L b 4 —
]
4
0 |
0 4
K, 00,

Figure 8. Power factor w as a function of the produgiyk
measured experimentally and modeled with Eq. 24. Pts
are for a coated paper ak 0.09 mm andy, from 2.4 to 7.7
cycles/mm. Pointsj are for a coated paper ajk 0.253 mm
and w, from 2.4 to 7.7 cycles/mm. Poin{s) are for a single
halftone frequency ok, = 2.4 cycles/mm and a series of pa-
pers ranging from k= 0.253 to 1.6 mm.
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v are functions of the dot area fractidn, To examine
the severity of this deficiency in thvev model, one can
compareR, versusF, calculated with both Egs. 4 and 11.
This is done by selecting valuesRf, T, F;, k,, k, and
w, and applying Eq. 11 to calculalR versusF;. Then
corresponding values ef andv are calculated from Eqgs.
22 and 23 withF, = F, = 0.5, and thes& andv values
are used in Eqg. 4 to calcula® versusF,. Figure 6 is a
typical example, and it is evident that, whereaswhe
model is not in exact agreement with the a priori model,
the differences are very small.

If we select, =F,= 0.5 in Eq. 22 we can calculate
the relationship betweew andk, as shown in Fig. 7.
The points in Fig. 7 were calculated with Eq. 22. How-
ever, the solid line is an empirical function fit to these
calculated points with

(24)

a simple exponential equation containing an empirical
constant, A = 0.66. This empirical function is easier to
use than Eq. 22 with the cumbersome series expression
G,(F,). To check the validity of Eq. 24 experimentally, a
set of one-dimensional halftone patterns was printed by
offset lithography at a series of line frequenciesrang-

ing from 2.4 to 7.7 cycles/mm on a series of papers mea-
sured previously, having values lgfranging from 0.09

to 1.60 mm' Each paper was printed with a halftone
gray scale with a dot fraction ranging & @&, < 1.0. For
each paper at each frequency the prodkgt,, was



AR IAR

1 —_— Then the Yule—Nielsen effect may be defined as follows:
Yule—Nielsen effect = B/ DR,,,, 27)

The relationship between the Yule—Nielsen effect de-
fined by Eqg. 27 and the value of the MTdonstantk,
may be modeled easily and quickly by applying, in se-
e -] guence, Eqgs. 24, 4, 3, and then Eq. 1 Wth R(F,) and
R, =R, (F,). If we assume that the dot edge effect is neg-
ligible (k, = 0, orv = 0), then the Yule-Nielsen effect
varies with the produdt,w, as shown in Fig. 9.

Among researchers and graphic arts professionals
known to the authors it is popularly believed and ob-
| served that the shape of the halftone dot will have an
0 5 effect on the Yule—Nielson effect. Figure 9 and Eq. 24

kw, apply strictly only to one-dimensional halftone lines. If

Figure 9. The magnitude of the Yule-Nielsen effect, AR/AR one were to develop an a priori model to describe half-

max’

as a function of the product k @. tone dots of other shapes, then a much more involved

ne two-dimensional Fourier analysis, such as that described
by Ruckdeschel and Hauéand more recently by Kruse
r;fmd Wedin,would be required. However, one might ex-
pect, empirically, that Eq. 24 would apply as a reason-
ably close approximation to the behavior of other types
8f halftone systems provided appropriate values for the
éxponential constant, A, are chosen. If this is the case,
then one might be able to make direct measurements of
Conclusions the empiricalw constant, as described previous$lgnd

plot the results against the known values of the product,

Ever since the Yule—Nielsen effect has been observeI&W‘J‘ Then by fitting the data to Eq. 2.4 a value_of the

and described experimentally it has been recognizegonStant A would perhaps provide a direct experimental
gualitatively that the magnitude of the effect is governeocnarathr:'zat;fontOfft.hi magntltutqe of thetheffecftf Oft dot
by the distance light scatters laterally in paper relativ h ape, the ed ec fo hm plene _ral lon, orr] other effects ﬁn
to the size of halftone dots. Excellent theoretical stud: '€ magnitude of the Yule-Nie sen p enomeno’n. The
ies, such as those by Ruckdeschel and Haasermore thrus_t of yvork currently under_w_ay in the a_u_thors labo-

recently by Kruse and Wedimhave described two- and ratories Is focused on examining _th_e utility of these
three-dimensional derivations of the Yule—Nielsen eﬁect:sem|emp|r|cal models for characterizing such effects.
Numerical simulations based on such theoretical mod-
els illustrate the significance of light scattering in half-

tone systems. However, they do not provide an easily, .
used tool for estimating the magnitude of the Yule—¥hIS work was supported by grants from Mead Central

Nielsen effect from direct measurements of the papegleosiﬁagcnhd?envs \";’i':/lthcgrnpdogligﬁnl:'issfﬁc'al thanks to Bruce

MTF constantk,. By combining theoretical with em-
pirical models, practical relationships may be deveIopedA
Equation 24 is an example that suggests a simple but
useful link between the halftone frequenay, lateral

scattering k,, and the magnitude of the Yule—Nielsen
effect. To achieve this link, we define the magnitude o . ; .
the Yule—Nielsen effect, B, as the difference between prepared at line frequenciag, ranging from 2.4o 7.7

the reflectance predicted by the Murray—Davies modeli"€ Pairs per millimeter (60 to 195 Ipi). These patterns
(Eq. 1 withR = R, andR, = R) and the reflectance were printed with an offset lithographic press, using a
: i~ Mink -

i i conventional aluminum printing plate prepared by the
observed exper-imentally for a halftonefae 0.5: School of Printing at Rochester Institute of Technology.

The plate was prepared from a photographic film, using
conventional techniques. Once the halftone gray scales
were printedthey were examined under a microscope
with a field of view of 4.0 mm. The microscope image
yas captured with a CCD camera and frame grabber,
which digitized the image at 464 by 512 pixels as de-
scribed previously: Pixel values captured in this way
AR.. = (Murray—Davies reflectance) were corrected for a background “dark signal” by sub-
e (Yule—Nielsen at = 2) (26) tracting the pixel value obtained by capturing an image
' with the lens cap in place. The resulting pixel values in

max

noted. Then the empirical halftone model was fit to eac
gray scale, and the best fit value of the power constan
w, was plotted versus the producty,. The results shown
in Fig. 8 confirm that Eq. 24 adequately represents th
behavior of one-dimensional halftones.

Acknowledgment

ppendix: Printing and Measuring Halftones

To compare theory with printed halftones, a set of
§traight-|ine halftone gray scales, ranging@ < 1, were

AR = (Murray—Davies reflectance)
— (experimental reflectance). (25)

The maximum value ofAR is predicted to be the

difference between the Murray—Davies reflectance an
the Yule—Nielsen reflectance at= 2:
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the image were then ratioed, pixel by pixel, against a
similarly corrected reference white, and the result was
multiplied by the known reflectance of the reference. Tha.
result was a 464 by 512 array of reflectance values rep
resenting the image observed through the microscopé.
From this reflectance matrix, a histogram of reflectance.
values was determined. Figure 3 illustrates such a hist®-
gram for a 60-Ipi halftone nominally printedrat= 0.50.
The reflectance values at the peaks corresponding to tlee
ink, R, and the papeR,, are easily measured from the
histogram. In addition, an experimental valuecptan 7.
be measured as the relative areas under the histogram
curves with the threshold reflectance between dot and
paper defined as the saddle point between the peaks in
the histogram. 8.
9.
Nomenclature
dot area fraction
paper area fractior, = 1 —F,
reflectance of the halftone ink dot, assumed
to be a constant in Egs. 1 and 2

mnm

p

H LD
I

intrinsic reflectance of the paperigt=0
reflectance of the ink on paperit= 1.00
transmittance of the ink layer of the dot at
F, =1, equal toR,/R;)"?

mean value of reflectance of paper between

3
i

R(Fy)

halftone dots, measured experimentally16.

from a peak in the histogram distribution
of reflectance, and observed to be a func-
tion of the dot area fractioff;

R(F)

experimentally from a peak in the histogram

distribution of reflectance and observed to19.

be a function of the dot area fractids,
relative frequency of occurrence of a given
Rin a histogram

reflectance at the boundary between ink

H(R)

dot and paper, and used to threshold be20.
21.

tween ink and paper

10.
11.

12.
reflectance of the paper between the dots13.
assumed to be a constant in Egs. 1 and 2 14.

15.

17.
mean value of halftone ink dot, measuredis.
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