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Abstract

The Yule–Nielsen effect, also called optical dot gain
a nonlinear relationship between the reflectance o
halftone image and the fractional dot area of the h
tone dots. Two models of the Yule–Nielsen effect a
examined. The first is an empirical model previous
described in the literature, and the second is an a p
model derived for an idealized halftone line system
one spatial dimension. Both are shown to model h
tone behavior well. By combining the two models w
derive a semiempirical function that establishes a sim
connection between the magnitude of the Yule–Niels
effect and independently measurable scattering cha
teristics of the paper. The potential utility of th
semiempirical model for characterizing the impact 
other factors, such as the shape of halftone dots and d
of ink penetration, is discussed.

Introduction

Dot gain, a concept long associated with halftone im
ing, refers to the generally observed phenomenon th
printed dot pattern appears darker than one would 
pect on the basis of the nominal size of the dot inten
by the printing process. Physical reasons for dot g
are many, including the lateral spread of ink during tra
fer from a lithographic plate and the lateral diffusion 
ink-jet drops as they strike the paper. Once the im
has been printed, the actual dot area may be meas
Conservation of photon energy suggests the Murr
Davies equation,1

R(Fi) = FiRi + (1 – Fi)Rp. (1)

In this equation the macroscopic reflectance, R(Fi),
is linearly scaled between the reflectance of the pa
Rp, and the reflectance of the ink, Ri , with the fractional
dot area 0 ≤ Fi ≤ 1. For example, if one were to print 
halftone dot of area fraction Fi = 0.5, and if the respec
tive paper and ink reflectances were 1.00 and 0.00, t
one would expect a macroscopic reflectance of R = 0.50.
However, an experimental measurement almost alw
results in a reflectance significantly less than that p
dicted by the Murray–Davies equation. This effect, wh
is different from physical dot gain, is called the Yule–
Nielsen effect, or optical dot gain.2
432—Recent Progress in Digital Halftoning II
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During the past several decades the nonlinear r
tionship observed between R and Fi ,

       R(Fi ) = [Fi Ri
1/n + (1− Fi )Rp

1/n ]n , (2)

has been modeled empirically and quite successfully w
Eq. 2, the Yule–Nielsen equation.3,4 Experimentally one
may adjust the value of n to achieve the best fit betwee
Eq. 2 and measured values of R and Fi. The Yule–Nielsen
equation generally provides an excellent fit to expe
mental data with values of n typically falling in the range
1 ≤ n ≤ 2.5 However, it would also be useful to be able
predict the n value based on underlying paper and i
optical parameters. Both theoretical and empirical 
tempts have been made to relate the Yule–Nielsen n value
to the fundamental physical and optical parameters
ink and paper,6–12 but these have largely fallen short 
providing practical solutions to the problem.13 Part of
the difficulty in relating n to fundamental parameters ma
be a reflection of the fact that the Yule–Nielsen eq
tion, though a useful and often accurate model of to
reproduction, is intrinsically incorrect. Photon flux, an
thus reflectance, should add linearly, as suggested by
Murray–Davies (Eq. 1), rather than by the power fac
of 1/n in Eq. 2. The objective of the current project h
been to replace the Yule–Nielsen model with models t
can more easily be related to fundamental physical 
optical parameters of the system. As will be shown, 
magnitude of the Yule–Nielsen effect can be predic
quantitatively from the measured scattering characte
tics of papers.

An Empirical Alternative to Yule–Nielsen

The underlying cause of the nonlinearity between R and
Fi, as suggested by Yule and Nielsen in their origi
work,3,11 is that light that strikes the paper between ha
tone dots does not always reflect back from the poin
which it entered the paper. Rather, light scatters and
ten emerges under a halftone dot and is thus absor
Thus the overall reflectance of the image is lower th
would be expected in the absence of lateral scatter
In addition, recent reports of microdensitometric ana
sis of halftones has shown that both the reflectance
the paper between the dots, Rp, and the reflectance o
the halftone dot, Ri, decrease as the dot area fraction,Fi,
increases.7,14,15 The data in Fig. 1 illustrate a typical cas
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for the mean reflectance values of ink dots and of pa
between the dots, measured by microdensitometry as
scribed in the Appendix.

As shown before,15 the changes in Ri and Rp with Fi

observed in experiments such as that shown in Fig
can be modeled empirically by Eqs. 3 and 4.

Ri (Fi ) = Rg [1− (1− Ti )Fi
w ]⋅[1− (1− Ti )Fi

v ]. (3)

Rp (Fp ) = Rg [1− (1− Ti )(1− Fp
w )]⋅[1− (1− Ti )(1− Fp

v )].   (4)

In these equations Fp = 1 – Fi, and Rg is the reflec-
tance of the unprinted paper; Ti is the transmittance o
the ink at 100% dot. Assuming Beer–Lambert transm
sion, Ti = (Rink /Rg)1/2, where Rink is the reflectance of the
ink image at 100% dot. The power factors, w and v, are
identical in both equations and are adjusted empirica
to achieve a good fit between the equations and the m
sured values of paper and ink reflectances at each v
of Fi. The resulting reflectance values are then used
the Murray–Davies equation [Eq. 1 with Rp = Rp(Fp) and
Ri = Ri(Fi)] to calculate the overall R versus Fi. This em-
pirical model has been shown to model the Yule–Niels
effect as well as the Yule–Nielsen equation.15 The solid
lines drawn thorough the data in Fig. 1 were modeled
this way.

The empirical w,v model was observed to fit as we
as, but not better than, the much simpler Yule–Niels
model when applied to a variety of halftone types p
duced with a variety of impact and non-impact printi
technologies.15 However, it was suggested that the w,v
model may offer a better connection with the fundam
tal physical and optical parameters of the system. In p
ticular, the w factor may be related to the lateral scatteri

Figure 1. Reflectance values for a 65 lpi (2.6 cycles/mm) h
tone gray scale printed with a wax thermal transfer print
Values R, R

i
, and R

p
 are, respective reflectance values for th

overall image, the halftone dots, and the paper between
dots, measured as described in the Appendix. Solid lines
modeled with empirical constants w = 0.35 and v = 0.05.
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power of the paper and the v factor to the lateral distri
bution of ink at the edge of the dot. As described bel
these relationships can be established theoretically,
combining the theoretical analysis with the empirical w,v
model leads to derivation of a semiempirical relatio
ship that directly and simply relates the magnitude
the Yule–Nielsen effect to independently measurable
rameters of the system. Moreover, the results sugge
experimental means for quantitatively characterizing
impact of other factors, such as the shapes of half
dots or the extent of penetration of ink-jet ink, on 
Yule–Nielsen effect.

An a priori Model of an Ideal Halftone

A simple, one-dimensional halftone system is one w
lines rather than dots, and we assume ink having B
Lambert transmittance. The ink is also assumed to
on top of the paper substrate with no penetration 
the paper. The Fourier series of Eq. 5 provides the b
for a description of this idealized halftone system:

      
  
f i (x) = Fp + 2

π
−1n

nn=1

∞

∑ sin(nπFp ) cos(2πnωox). (5)

The paper fraction is Fp = 1 – Fi, and wo is the line
frequency of the halftone. These and other terms are
scribed in Fig. 2. We can scale this function to desc
the transmittance pattern of the halftone lines:

Ti (x) = f i (x)(1− Ti ) + Ti . (6)

If the edge of the halftone line is not perfectly sha
we can modify the Fourier series as shown in Eq. 7. 
MTFi function in this equation,

    
f x F

n
n F n x MTF ni p

n

n
p o i o( ) sin( ) cos( ) ( ),= + −

=

∞
∑2 1

2
1π

π π ω ω (7)

is a Fourier description of the lateral distribution of color
at the edge of the dot. If the dot has a perfectly sharp e
then MTFi = 1 and Eq. 7 is the same as Eq. 5.

Applying Eq. 7 to Eq. 6 not only describes the tra
mittance pattern of the halftone dots; it also descri
the irradiance of light entering the paper after pass
the halftone dots. After this pattern of light enters 
paper it is scattered and some is absorbed. Scatter
described with an MTFp function as shown in Eq. 8.

-

e
re

Figure 2. Diagram of the Fourier series of Eq. 5.
Chapter V—Tone Reproduction and Gamuts—433
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f p (x) = Fp + 2

π
−1n

nn=1

∞

∑ sin(nπFp ) cos(2πnωox)

• MTFi (nwo )MTFp(nwo ). (8)

Absorption of light is governed by the reflectan
factor of the paper, Rg. With Rg and the series expressi
of Eq. 8 one can model the overall irradiance pat
reflected from the paper with Eq. 9:

         Ir (x) = Rg [ f p (x)(1− Ti ) + Ti ]. (9)

This pattern of light then encounters the transm
tance pattern of the halftone dots to produce a fina
flected pattern, R(x), given by Eq. 10.

    R(x) = Ir (x) ⋅Ti (x). (10)

Relating Theory to Data

If we set x = l/2 in Fig. 2 and in Eq. 10, then we have 
reflectance R(l/2) for the paper at the point equidista
between two halftone lines. Similarly, if we set x = 0 in
Eq. 10 we have the reflectance R(0) for the center of th
halftone line. These quantities can be measured ex
mentally with the image microdensitometer describe
the Appendix. However, it is easier experimentally a
more precise statistically to examine the histogram
reflectance values captured over a 4-mm field of view
a halftone dot pattern. Figure 3 shows such a histog
for a halftone pattern printed at a nominal 50% dot a
by offset lithography. The average reflectance of 
paper between the halftone lines is located at the r
hand peak of the histogram. Similarly, the average
flectance of the halftone line is indicated by the peak
the left side of the histogram. These mean value

Reflectance, R

R
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0 1

Figure 3. Histogram showing the relative frequency of o
rence of reflectance values in halftone images captured a×
magnification. R

i
 and R

p
 are reflectance values at the peak

spectively corresponding to ink dots and to paper betwe
dots.
434—Recent Progress in Digital Halftoning II
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reflectances can be modeled by integrating Eq. 10 f
x = (a/2) to x = l – (a/2). Similarly, the mean value of th
reflectance of the ink dot can be modeled by integra
from x = – a/2 to x = +a/2. With some algebraic manipula
tion this leads to the following expressions for Rp and Ri:

Rp (Fp ) = Rg [Gp (Fp )(1− Ti )] + Ti ]⋅[Gi (Fp )(1− Ti )] + Ti ], (11)

Ri (Fi ) = Rg [Hp (Fi )(1− Ti )] + Ti ]⋅[Hi (Fi )(1− Ti )] + Ti ],    (12)

where we have the following series expressions res
ing from the integration:

 G F F nF n np p p

n

p i o p o( ) ( ) ( ) ( ),=
=−∞

∞

∑ sinc MTF2 MTF ω ω     (13)

     G F F
n

nF ni p p

n

n

p i o( ) ( ) ( ),= −

=−∞

∞

∑ 1 2sinc MTF ω (14)

H F F nF n np i i

n

i i o p o( ) ( ) ( ) ( ),= −
=−∞

∞

∑1 2sinc MTF MTFω ω  (15)

           H F F nF ni i i

n

i i o( ) ( ) ( ).= −
=−∞

∞

∑1 2sinc MTF ω (16)

The model represented by Eqs. 11 through 16 c
tains three independently measurable constants: Rg = re-
flectance of the unprinted paper; Ti = transmittance o
the ink at Fi = 1; and wo = frequency of the halftone line
Only two other items are required to calculate Ri(Fi) and
Rp(Fi), and with Eq. 1 to calculate the overall, mac
scopic reflectance of the halftone image. These two it
are the MTF functions for the scatter of light in pap
and the lateral spread of the ink edges.

In a recent MTF analysis of paper, it was shown t
the lateral scattering of light in paper could be mode
closely with the following MTF function16:

MTF
k

p
p

( )
( )

..ω
ω

=
+

1

1 1 7 (17)

Values of the MTF constant, kp, can be measure
experimentally, either by analysis of Kubelka–Mu
scattering and absorption coefficients16–18 or by image
analysis of various patterns of light projected onto 
surface of the paper.3,11,16,19,20 Because no MTF function
that describes the softness of printed dot edges has
explored or reported in the literature, the following fun
tion was chosen arbitrarily:

MTF
k

i
i

( )
( )

..ω
ω

=
+

1

1 1 7 (18)

Although the a priori model appears complex, it
easily applied. Starting with four independently meas
able constants, Rg, Ti, wo, and kp, and one arbitrary con

r-
0
-
the
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stant, ki, one can use sequentially Eqs. 18 back throu
11 to calculate paper and ink reflectances as a func
of Fi. Then Eq. 1 can be used to calculate the ove
macroscopic reflectance.

An Experimental Test of the a priori Model

One-dimensional halftone gray scales were printed w
offset lithography as described in the Appendix. The h
tones ranged from 0 to 100% dot (Fi from 0 to 1) and
were printed at 60 lpi (wo = 2.4 cycles/mm) on three di
ferent papers, called A, B, and C, with MTFp constants
kp = 0.263, 0.455, and 2.00 mm, respectively, measu
as described previously.16 Paper A was a coated sheet
was noncoated, and C was a resin-filled translucent s
manufactured as a tracing paper. Paper B was also pr
at 195 lpi (wo = 7.7 cycles/mm). The MTF constant 
each paper had been characterized previously.16 Mean
values of paper and ink reflectance in the halftones w
measured from reflectance histograms, as describe
the Appendix. The print densities varied somewhat fr
paper to paper and from print run to print run. Thus,
order to compare results, relative reflectance values w
calculated by linearly scaling reflectance over the ra
between 0 and 1 corresponding to relative reflectanc
the ink at Fi = 1.0 and of the paper at Fi = 0. Figures 4
and 5 show the results.21

To model the lines in Figs. 4 and 5, values of Rg, Ti,
and the MTFp constants for Papers A, B, and C were u
as measured and were not adjusted to minimize the
ference between the data and the model. A value ofki =
0.05 mm was chosen to provide the best fit to the d
for Paper B at 7.7 cycles/mm. The same value then
used in all of the other models in Figs. 4 and 5.

Print quality in the lithographic print series was n
very good, and there is much experimental noise in
microreflectance data. However, the significance of 
model can still be seen in the trends. Figure 4 shows

Figure 4. Reflectance range versus Fi for Paper B printed at
ω0= 2.4 cycles/mm (x) and at ω0 = 7.7 cycles/mm ( ). Both
ink reflectance, Ri, and reflectance of the paper are betwe
the dots, Ri, shown. Solid lines are modeled as described
the text.
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experimental effect of changing the frequency, wo, of the
halftone pattern. Figure 5 shows the effect of chang
paper type, kp. In both cases the experimental trends
closely modeled, as shown by the solid lines in the 
ures, by changing only the corresponding parame
wo and kp of the model, leaving the other parameters 
changed.

Combining the Empirical and
a priori Models

The a priori model represented by Eqs. 11 through
relate the tone reproduction characteristics of halft
images and independently measurable parameters o
system. However, the model strictly applies only to

n
in

Figure 5. Reflectance range versus Fi for Papers A, B, and C ( 
, x, and  ) with kp = 0.263, 0.455, and 2.00 mm, respective
The halftones are printed at 2.4 cycles/mm. Solid lines are m
eled as described in the text.
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Figure 6. Reflectance of paper between halftone dots m
eled ( ) with Eq. 11 with kp = 0.25 mm and ki = 0.05 mm,
and modeled (x) empirically with Eq. 4 using w = 0.332 and
= 0.056, as calculated from Eqs. 22 and 23 at Fi = 0.5.
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ideal, one-dimensional halftone with ink perfectly on t
of the paper. The empirical model of Eqs. 3 and 4,
the other hand, has been shown to be generally a
cable to a wide variety of halftone types produced b
wide variety of printing technologies.15 If the empirical
model is a close approximation of the behavior of rea
halftones, then we should be able to relate the w and v
parameters of the empirical model to the independe
measurable parameters of the a priori model. We ca
this by equating Eqs. 3 and 11:

[1− (1− Ti )Fi
w ]⋅[1− (1− Ti )Fi

v ] =
[Gp (Fp )(1− Ti )] + Ti ]⋅[Gi (Fp )(1− Ti )] + Ti ]. (19)

W

Figure 7. Points ( ) are the empirical power factor, w, as 
function of the product kpωo calculated using Eq. 22 with Fi =
0.5. The line is Eq. 24 with A = 0.66.

kρωo
0 8

1

0

kpωo

W

Figure 8. Power factor w as a function of the product kpωo

measured experimentally and modeled with Eq. 24. Points( )
are for a coated paper at kp = 0.09 mm and ωo from 2.4 to 7.7
cycles/mm. Points (x) are for a coated paper at kp = 0.253 mm
and ωo from 2.4 to 7.7 cycles/mm. Points ( ) are for a single
halftone frequency of ωo = 2.4 cycles/mm and a series of p
pers ranging from kp = 0.253 to 1.6 mm.

0 4

1

0
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Because the left side of Eq. 19 is empirically deriv
we are free to relate the terms in brackets as follows:

[1− (1− Ti )Fi
w ] = [Gp (Fp )(1− Ti ) + Ti ], (20)

[1− (1− Ti )Fi
v ] = [Gi (Fp )(1− Ti ) + Ti ]. (21)

With algebraic manipulation we have the following:

w =
ln(Gp (Fp ))

ln(Fp )
, (22)

v =
ln(Gi (Fp ))

ln(Fp )
. (23)

The right side of Eq. 23 is a function only of Fp, ki,
and wo. Thus, as suggested originally, the power factv
depends on the edge sharpness, ki, of the halftone dot
The right side of Eq. 22 contains the product MTFi •
MTFp and thus is a function of both the edge sharpn
ki, and the lateral scatter of light, kp. However, in most
cases observed in this laboratory the mean scattering
tance of light is much greater than the dimensions of
edges so that kp > > ki. When this is true, we can ap
proximate the MTF of paper as MTFi • MTFp ª MTFp. In
this case the w power factor depends on the paper M
constant, kp, as suggested previously.15

In the empirical model the w and v factors are used
as constants. However, Eqs. 22 and 23 imply that w and
v are functions of the dot area fraction, Fi. To examine
the severity of this deficiency in the w,v model, one can
compare Rp versus Fi calculated with both Eqs. 4 and 1
This is done by selecting values of Rg, Ti, Fi, kp, ki, and
wo and applying Eq. 11 to calculate Rp versus Fi. Then
corresponding values of w and v are calculated from Eqs
22 and 23 with Fi = Fp = 0.5, and these w and v values
are used in Eq. 4 to calculate Rp versus Fi. Figure 6 is a
typical example, and it is evident that, whereas thew,v
model is not in exact agreement with the a priori mo
the differences are very small.

If we select Fi = Fp = 0.5 in Eq. 22 we can calcula
the relationship between w and kp as shown in Fig. 7
The points in Fig. 7 were calculated with Eq. 22. Ho
ever, the solid line is an empirical function fit to the
calculated points with

     w e
k p= − −

1
A ω

, (24)

a simple exponential equation containing an empir
constant, A = 0.66. This empirical function is easier
use than Eq. 22 with the cumbersome series expres
Gp(Fp). To check the validity of Eq. 24 experimentally
set of one-dimensional halftone patterns was printed
offset lithography at a series of line frequencies, wo, rang-
ing from 2.4 to 7.7 cycles/mm on a series of papers m
sured previously, having values of kp ranging from 0.09
to 1.60 mm.15 Each paper was printed with a halfto
gray scale with a dot fraction ranging 0.0 ≤ Fi ≤ 1.0. For
each paper at each frequency the product, kpwo, was
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noted. Then the empirical halftone model was fit to e
gray scale, and the best fit value of the power cons
w, was plotted versus the product, kpwo. The results show
in Fig. 8 confirm that Eq. 24 adequately represents
behavior of one-dimensional halftones.

Conclusions

Ever since the Yule–Nielsen effect has been obse
and described experimentally it has been recogn
qualitatively that the magnitude of the effect is gover
by the distance light scatters laterally in paper rela
to the size of halftone dots. Excellent theoretical s
ies, such as those by Ruckdeschel and Hauser6 and more
recently by Kruse and Wedin,7 have described two- an
three-dimensional derivations of the Yule–Nielsen eff
Numerical simulations based on such theoretical m
els illustrate the significance of light scattering in ha
tone systems. However, they do not provide an ea
used tool for estimating the magnitude of the Yu
Nielsen effect from direct measurements of the pa
MTF constant, kp. By combining theoretical with em
pirical models, practical relationships may be develop
Equation 24 is an example that suggests a simple
useful link between the halftone frequency, wo, lateral
scattering, kp, and the magnitude of the Yule–Niels
effect. To achieve this link, we define the magnitude
the Yule–Nielsen effect, DR, as the difference betwee
the reflectance predicted by the Murray–Davies mo
(Eq. 1 with Ri = Rink and Rp = Rg) and the reflectanc
observed exper-imentally for a halftone at Fi = 0.5:

∆R = (Murray–Davies reflectance)
     – (experimental reflectance). (2

The maximum value of ∆R is predicted to be th
difference between the Murray–Davies reflectance 
the Yule–Nielsen reflectance at n = 2:

∆Rmax = (Murray–Davies reflectance)
          – (Yule–Nielsen at n = 2). (26)

Figure 9. The magnitude of the Yule-Nielsen effect, ∆R/∆Rmax,
as a function of the product kpωo.
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Then the Yule–Nielsen effect may be defined as follo

      Yule–Nielsen effect = DR / DRmax. (27)

The relationship between the Yule–Nielsen effect 
fined by Eq. 27 and the value of the MTFp constant, kp,
may be modeled easily and quickly by applying, in 
quence, Eqs. 24, 4, 3, and then Eq. 1 with Ri = Ri(Fi) and
Rp = Rp(Fp). If we assume that the dot edge effect is n
ligible (ki = 0, or v = 0), then the Yule-Nielsen effec
varies with the product kpwo as shown in Fig. 9.

Among researchers and graphic arts professio
known to the authors it is popularly believed and 
served that the shape of the halftone dot will have
effect on the Yule–Nielson effect. Figure 9 and Eq.
apply strictly only to one-dimensional halftone lines.
one were to develop an a priori model to describe h
tone dots of other shapes, then a much more invo
two-dimensional Fourier analysis, such as that descr
by Ruckdeschel and Hauser6 and more recently by Krus
and Wedin,7 would be required. However, one might e
pect, empirically, that Eq. 24 would apply as a reas
ably close approximation to the behavior of other ty
of halftone systems provided appropriate values for
exponential constant, A, are chosen. If this is the c
then one might be able to make direct measuremen
the empirical w constant, as described previously,15 and
plot the results against the known values of the prod
kpwo. Then by fitting the data to Eq. 24 a value of 
constant A would perhaps provide a direct experime
characterization of the magnitude of the effect of 
shape, the effect of ink penetration, or other effects
the magnitude of the Yule–Nielsen phenomenon. 
thrust of work currently under way in the authors’ lab
ratories is focused on examining the utility of the
semiempirical models for characterizing such effect
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Appendix: Printing and Measuring Halftones

To compare theory with printed halftones, a set
straight-line halftone gray scales, ranging 0 ≤ Fi ≤ 1, were
prepared at line frequencies, wo, ranging from 2.4 to 7.7
line pairs per millimeter (60 to 195 lpi). These patte
were printed with an offset lithographic press, usin
conventional aluminum printing plate prepared by 
School of Printing at Rochester Institute of Technolo
The plate was prepared from a photographic film, us
conventional techniques. Once the halftone gray sc
were printed, they were examined under a microsco
with a field of view of 4.0 mm. The microscope ima
was captured with a CCD camera and frame grab
which digitized the image at 464 by 512 pixels as 
scribed previously.15 Pixel values captured in this wa
were corrected for a background “dark signal” by s
tracting the pixel value obtained by capturing an im
with the lens cap in place. The resulting pixel value
Chapter V—Tone Reproduction and Gamuts—437



t 
a
h

re
op
nc
ist

o t
e

gr
an
ks

ed

ts
 2

 at

e
lly
n

nc

ed
m

 to

en

ink
be

n

,

ded
-

m,

l-

ar-
ypi-

te

 of
the image were then ratioed, pixel by pixel, agains
similarly corrected reference white, and the result w
multiplied by the known reflectance of the reference. T
result was a 464 by 512 array of reflectance values 
resenting the image observed through the microsc
From this reflectance matrix, a histogram of reflecta
values was determined. Figure 3 illustrates such a h
gram for a 60-lpi halftone nominally printed at Fi = 0.50.
The reflectance values at the peaks corresponding t
ink, Ri, and the paper, Rp, are easily measured from th
histogram. In addition, an experimental value of Fi can
be measured as the relative areas under the histo
curves with the threshold reflectance between dot 
paper defined as the saddle point between the pea
the histogram.

Nomenclature
Fi = dot area fraction
Fp = paper area fraction, Fp = 1 – Fi

Ri = reflectance of the halftone ink dot, assum
to be a constant in Eqs. 1 and 2

Rp = reflectance of the paper between the do
assumed to be a constant in Eqs. 1 and

Rg = intrinsic reflectance of the paper at Fi = 0
Rink = reflectance of the ink on paper at Fi = 1.00
Ti = transmittance of the ink layer of the dot

Fi = 1, equal to (Rink/Rg)1/2

Rp(Fp) = mean value of reflectance of paper betwe
halftone dots, measured experimenta
from a peak in the histogram distributio
of reflectance, and observed to be a fu
tion of the dot area fraction, Fi

Ri(Fi) = mean value of halftone ink dot, measur
experimentally from a peak in the histogra
distribution of reflectance and observed
be a function of the dot area fraction, Fi

H(R) = relative frequency of occurrence of a giv
R in a histogram

Rt = reflectance  at   the  boundary between 
dot and paper, and used to  threshold  
tween ink and paper
438—Recent Progress in Digital Halftoning II
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